Форма обратной связи с компанией
Ваш запрос успешно отправлен
Ваше сообщение успешно отправлено. Вскоре мы свяжемся с Вами! Благодарим за обращение.
г.Краснодар, ул.Российская, 69/1
Ваше сообщение успешно отправлено. Вскоре мы свяжемся с Вами! Благодарим за обращение.
В материале описывается мировой практический опыт в применении высших водных растений (ВВР) в сфере очистки сточных вод. Авторы статьи - Диренко А.А., Коцарь Е.М.
Водные растения в водоемах выполняют следующие основные функции [1]:
Способность высших водных растений удалять из воды загрязняющие вещества — биогенные элементы (азот, фосфор, калий, кальций, магний, марганец, серу), тяжелые металлы (кадмий, медь, свинец, цинк), фенолы, сульфаты — и уменьшать ее загрязненность нефтепродуктами, синтетическими поверхностно-активными веществами, что контролируется такими показателями органического загрязнения среды, как биологическое потребление кислорода (БПК) и химическое потребление кислорода (ХПК), позволила использовать их в практике очистки производственных, хозяйственно-бытовых сточных вод и поверхностного стока как в Украине, так и во всем мире.
Во многих странах Америки довольно широко используется системы очистки шахтных вод на плантациях камыша и тростника [2]. Описаны сооружения с камышовой растительностью для очистки хозяйственно-бытовых сточных вод в Нидерландах [3], Японии [4], Китае [5]; для очистки загрязненного поверхностного стока в Норвегии [6], Австралии [7] и в других странах. Стойкость камыша к действию больших концентраций загрязняющих веществ позволила довольно успешно использовать его для очистки сточных вод свиноводческих комплексов в Великобритании [8].
В г. Бентон (США) с населением 4700 человек с 1985 года осуществляется очистка бытовых сточных вод в прудах с зарослями камыша и других водных растений. Подсчитано, что стоимость такой системы очистки в 10 раз меньше, чем стоимость традиционных систем при удовлетворительном качестве очистки воды от соединений азота, фосфора, взвешенных и органических веществ [9]. В Ирландии (г. Вильямстоун) успешно эксплуатируется система совместной очисткихозяйственно-бытовых вод (72 %) и поверхностного стока (28 %), сконструированная в виде трех мелководных лагун, две из которых засажены камышом и рогозом, а третья представляет собой биопруд с плавающими водными растениями — лилией и ряской. В процессе очистки вода очищается до следующих показателей (мг/л): БПК — 9, взвешенные вещества — 9, полный азот — 14,2, аммиак — 0,8, нитраты — 9,2, полный фосфор — 4,45, ортофосфаты — 3,15. Среднее процентное уменьшение концентраций загрязняющих веществ в системе за двухлетний период изучения составляет: 48% для БПК, 83 % для взвешенных веществ, 51% для общего азота, 13% для общего фосфора, удаление патогенных организмов достигает 99,77 % [10].
Очистные системы вторичной и третичной очистки бытовых сточных вод, основанные на использовании элодеи, пригодны для использования в умеренном климате, где могут круглый год удалять биогенные элементы из сточных вод [11].
В Китае водный гиацинт используется для очистки сточных вод кинофабрики от серебра [13]. Установлено, что эффективность очистки воды от серебра, взвешенных веществ, соединений фосфора и азота, соответственно, составляла 100 %, 91 %, 53,9 %, и 92,9 %, при этом БПК и ХПК уменьшалaсь на 98,6 %, и 91 %. Предложенный метод позволяет отказаться от использования сорбционной очистки.
В России в Институте цитологии и генетики разработана технология очистки сточных вод с использованием водного гиацинта. Экспериментальная работа была проведена для сточных вод комплекса по разведению свиней. Очистка проводилась в биопрудах. Концентрация азота аммонийного снижалась (мг/л) с 30-50 до 4-5, БПК5 — со 150 до 20-30, ХПК — с 300 до 25-30, концентрация растворенного кислорода возрастала от 0,5 до 2-5 (мг О2)/л.
В Норвегии в 40 км на юг от Осло для очистки сельскохозяйственного поверхностного стока построено экспериментальное биоплато (рис. 1), которое представляет собой сконструированный из 8 параллельных полос (каждая размером 3 х 40 м) фильтр глубиной 0,5 м, площадью 1200 м2 [6]. Площадь водосбора составляет 0,8 км2. Предварительные исследования показали значительную эффективность удаления взвешенных веществ — 45-75 %, фосфора — 21-44 %, азота — 15 %. Исследования продолжаются.
Австралийские ученые разработали способ очистки поверхностного стока от автомагистралей [7]. Дороги не обустраиваются бордюрами, сбор стока осуществляется фильтрационными траншеями (рис. 2), заполненными на глубину 0,8 м гравием. На дне траншеи прокладываются сборные трубопроводы диаметром 150 мм, которые транспортируют сток для дальнейшей очистки в биоплато.
При очистке сточных вод чаще всего используют такие виды высших водных растений (ВВР), как камыш, тростник озерный, рогоз узколистый и широколистый, рдест гребенчатый и курчавый, спироделла многокоренная, элодея, водный гиацинт (эйхорния), касатик желтый, сусак, стрелолист обычный, гречиха земноводная, резуха морская, уруть, хара, ирис и пр.
Как показали исследования, корневая система рогоза имеет высокую аккумулирующую способность относительно тяжелых металлов [14]. Концентрация металлов в корневой системе рогоза, который рос на берегах шламонакопителей электростанций, достигала (мг/кг): железа — 199,1, марганца — 159,5, меди — 3,4, цинка — 16,6.
Известно, что камыш имеет высокие адаптивные свойства и способен прорастать в очень загрязненных промышленными сточными водами водоемах [15]. Он способен удалять из воды ряд органических соединений, в том числе фенолы, нафтолы, анилины и прочие органические вещества. Удельное поглощение минеральных веществ камышом достигает (г на 1 г сухой массы): кальция — 3,95, калия — 10,3, натрия — 6,3, кремния — 12,6, цинка — 50, марганца — 1200, бора — 14,6 [16].
В работе [17] оценена способность трех видов высших водных растений (камыш, тростник и рогоз) удалять из загрязненных вод азот и снижать БПК. Установлено, что при средней концентрации аммония в сточных водах 24,7 мг/л, после очистки с использованием ВВР его концентрация составляла (мг/л): для камыша — 1,4, для тростника — 5,3, для рогоза — 17,7. Эффективность снижения БПК также была наиболее высокой у камыша, немного ниже у тростника и рогоза. Замечено, что накопление растениями биогенных элементов стимулируется увеличением их концентрации в среде [18, 19], увеличивается под действием света [20], зависит от рН воды, а также от видовых особенностей растений [18], густоты биомассы [20] и ряда других факторов, а именно — температуры и кислородного режима.
Часть биоценоза микроорганизмов находится во взвешенном состоянии в виде хлопьев, а также образовывает пласт естественных отложений — бентос, в котором проходит активный процесс анаэробного разложения органических загрязнений. Значительную роль в процессах доочистки выполняют сапрофитные бактерии, которые вместе с ВВР успешно выполняют роль дезинфектантов за счет своих продуктов обмена и антагонизма с бактериями-гетеротрофами, что в ряде случаев позволяет избежать использования систем хлорирования или озонирования воды [21].
В работах [22, 23] выделяют поверхностные, инфильтрационные и наплавные конструкции биоплато. В качестве поверхностного биоплато используют инженерные сооружения или естественные заболоченные территории со свободным движением воды через сообщества воздушноводной и укоренившейся погруженной растительности. Инфильтрационные биоплато представляют собойземляные фильтрующие сооружения с загрузкой из щебня, гравия, керамзита, песка и других материалов. Фильтрация сточной воды может осуществляться как в горизонтальном, так и в вертикальном направлениях. На поверхности загрузки высаживаются наиболее стойкие древесно-кустарниковые и/или травянистые растения. Очистка сточных вод осуществляется за счет жизнедеятельности земноводных растениймакрофитов, микроорганизмов биопленки и ризосферы, а также грибов и актиномицетов ризосферы корней и в пласте перегноя, который постепенно формируется. Применяются также наплавные биоплато, при этом на поверхности плавающих в воде матов, которые изготавливают из синтетических волокон, высаживают травянистые многолетние растения, которые образуют развитую корневую систему. Наплавные биоплато хорошо зарекомендовали себя в очистке вод от плавающих примесей (пены, СПАВ, нефтепродуктов и др.).
В Украине использование ВВР на разных типах биоплато — инженерно-биологических сооружениях, которые обеспечивают очистку и доочистку хозяйственнобытовых, производственных сточных вод и загрязненного поверхностного стока, не требуя (или почти не требуя) затрат электроэнергии и использования химических реагентов при незначительном периодическом эксплуатационном обслуживании, — началось еще в прошлом веке. В Институте гидробиологии НАНУ, г. Киев, было предложено и исследовано использование биоплато как сооружения доочистки воды в каналах, по которым транспортируется вода из Днепра для водообеспечения таких регионов, как Крым, Донбасс, а также в других отраслях [15, 19, 24]. Широкое изучение и внедрения биоинженерных сооружений с использованием ВВР выполняется в Институте экологических проблем, г. Харьков.
В научно-инженерном центре (НИЦ) «Потенциал-4» работы по разработке технологии доочистки и водоотведения возвратных вод с применением ВВР в закрытом биоплато гидропонного типа начаты в 1990 г. НИЦ «Потенциал-4» предложены разные типы инженерно-биологических сооружений на основе закрытого биоплато гидропонного типа (ЗБГТ). ЗБГТ используется в разработках и технологиях очистки сточных вод как водоохранное сооружение, которое объединяет основные элементы очистки с использованием иммобилизованной на инертном субстрате микрофлоры и высших водных растений и водоотведение доочищенных возвратных вод в водоем непосредственно или опосредствованно (через поток грунтовых вод) при наличии благоприятных гидрогеологических условий площадки, на которой обустраивают ЗБГТ. Особенностью ЗБГТ является регулирование качества воды с помощью искусственно созданного гидробиоценоза, качественные и количественные характеристики составных компонентов которого формируются под непосредственным действием ВВР, в выполненном согласно инженерным расчетам сооружении без открытого зеркала воды.Научно-инженерным центром «Потенциал-4» вместе с Институтом гидробиологии НАНУ выполнены многолетние исследования разных типов ЗБГТ, на основе которых Институтом гигиены и медицинской экологии ЗБГТ признано сооружением, обеспечивающим нормативное качество возвратных вод для водоемов хозяйственно-питьевого и рыбохозяйственного использования. В основу технологии утепленного ЗБГТ положено использование как естественных процессов самоочищения, присущих водным и околоводным экосистемам, так и управление этими процессами на основе расчетов, базирующихся на учете внешних факторов (температура воды и воздуха, рН и Еh среды, период года, гидравлическая нагрузка на сооружения, начальная концентрация растворенного в воде кислорода и загрязняющих веществ воды, которая подается на очистку),а также технологических параметров биоплато (площадь и материал эффективных поверхностей как субстрата прикрепления для разнообразных водных организмов — бактерий, актиномицетов, грибов, простейших и одноклеточных водорослей, ракообразных, червей, насекомых и мшанок; внесение в период запуска биопрепаратов с селективно подобранными гидробионтами-биодеструкторами для конкретных типов загрязнений в водах, которые подлежат очистке) [26]. Наиболее важными характеристиками искусственно сформированного биоценоза макрофитов и микроорганизмов в биоплато есть общая площадь биоплато, которую занимают растения, их видовой состав и численность на 1 м2; время контакта потока воды с биоценозом, режим эксплуатации биоплато.
На рис. 3 представлена типовая схематическая конструкция ЗБГТ. Сточные воды от канализационной насосной станции со встроенным блоком очистки (КНС с ВБО) подаются в распределительный колодец, который часто размещается непосредственно в биоплато. От распределительного колодца через систему перфорированных трубопроводов, которые в конструктивном плане могут прокладываться по параллельной или лучевой схеме, вода поступает на биоплато. Фильтрация сточной воды происходит в вертикальном направлении через пласт загрузки (мытый щебень гравий, керамзит).Площадь ЗБГТ и толщина пласта загрузки определяется расчетом и типом ВВР. Высшие водные растения (камыш и тростник озерный) высаживаются с плотностью 4-6 растений на 1 м2. Сточные воды транспортируют через гравийную загрузку фильтрационного бассейна, корневища высших водных растений и бактериальный препарат, который способствует разложению трудноокисляемых органических веществ. При высокой загрязненности органическими веществами сточные воды перед подачей в ЗБГТ могут быть предварительно насыщены кислородом, который будет оказывать содействие аэробному окислению органических загрязнений микроорганизмами перифитона и дыханию корневищ высших водных растений. Покрытие сооружения инертным термоизоляционным материалом предотвращает его промерзание в зимний период и обеспечивает эффективную очистку сточной воды на протяжении года. Конструктивно создается естественная вентиляция всего объема загрузки ЗБГТ, которая обеспечивает эффективное использование ВВР и гидробиоценоза биопленки для окисления загрязнений.
Разработаны разные конструкции биоплато (одноярусные и двухъярусные, одноступенчатые и многоступенчатые), позволяющие осуществлять эффективную очистку и водоотведение доочищенных вод в поток грунтовых вод или непосредственно в водоем. На рис. 4 и рис. 5 представлены фото ЗБГТ на этапах введения в эксплуатацию и на третьем году эксплуатации.Кроме своих функций как биоинженерных сооружений, ЗБГТ, как высокопродуктивная экосистема, создает пространственную неоднородность в существующих обедневших антропогенно-природных ландшафтах, предоставляет дополнительные места обитания и пищевые ресурсы для многих видов флоры и фауны, которая, в свою очередь, создает благоприятные условия для поддержки биоразнообразия [22, 25]. Использование принципов ландшафтного дизайна при проектировании и строительстве ЗБГТ позволяет широко использовать декоративные возможности сооружений для улучшения эстетичных характеристик промышленных площадок и других территорий [22].
Литература
Готовое решение для большинства задач очистки стоков!
Монтаж в короткие сроки, высокое качество очистки.
Россия, Краснодарский край,
г. Краснодар, ул. Российская, 69/1
г. Кореновск, ул. Красная, 152А
эл.почта: zakaz@prof-vodochistka.ru
тел.: +7 918 43-91-667 | +7 861 24-11-180